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Abstract

The sensitivity conjecturewhich claims that the sensitivity complexity
is polynomially related to block sensitivity complexity, is one of the most
important and challenging problem in decision tree complexity theory. De-
spite of a lot of efforts, the best known upper bound of block sensitivity, as
well as the certificate complexity, are still exponential interms of sensitivity:
bs( f ) ≤ C( f ) ≤ max{2s( f )−1(s( f ) − 1

3), s( f )} [3]. In this paper, we give a
better upper bound ofbs( f ) ≤ C( f ) ≤ ( 8

9 + o(1))s( f )2s( f )−1. The proof is
based on a deep investigation on the structure of thesensitivity graph. We
also provide a tighter relationship betweenC0( f ) ands0( f ) for functions with
s1( f ) = 2.

1 Introduction

The relation between sensitivity complexity and other decision tree complexity
measures is one of the most important topic in Boolean function complexity theory.
Sensitivity complexity is first introduced by Cook, Dwork and Reischuk [11,12] to
study the time complexity of CREW-PRAMs. Nisan [19] then introduced the con-
cept of block sensitivity, and demonstrated the remarkablefact that block sensitiv-
ity can fully characterize the time complexity of CREW-PRAMs. Block sensitivity
turns out to be polynomially related to a number of other complexity measures
for Boolean functions [9], such as decision tree complexity, certificate complexity,
polynomial degree and quantum query complexity, etc. One exception is sensitiv-
ity. So far it is still not clear whether sensitivity complexity could be exponentially
smaller than block sensitivity and other measures. The famous sensitivity conjec-
ture, proposed by Nisan and Szegedy in 1994 [20], asserts that block sensitivity and
sensitivity complexity are also polynomially related. According to the definition
of sensitivity and block sensitivity, it is easy to see thats( f ) ≤ bs( f ) for any total
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Boolean functionf . But in the other direction, it is much harder to prove an upper
bound of block sensitivity in terms of sensitivity complexity. Despite of a lot of
efforts, the best known upper bound of block sensitivity is still exponential in terms
of sensitivity: bs( f ) ≤ C( f ) ≤ max{2s( f )−1(s( f ) − 1

3), s( f )} [3]. The best known
separation between sensitivity and block sensitivity complexity is quadratic [4]:
there exist a sequence of Boolean functionsf with bs( f ) = 2

3 s( f )2 − 1
3 s( f ). Re-

cently, Tal [23] showed that any upper bound of the formbsl( f ) ≤ s( f )l−ε for ε > 0
implies a subexponential upper bound onbs( f ) in terms ofs( f ). Herebsl( f ), the
l-block sensitivity, defined by Kenyon and Kutin [17], is the block sensitivity with
the size of each block at mostl. Note that the sensitivity conjecture is equivalent
to ask whether sensitivity complexity is polynomially related to certificate com-
plexity, decision tree complexity, Fourier degree or any other complexity measure
which is polynomially related to block sensitivity. Ben-David [7] provided a cubic
separation between quantum query complexity and sensitivity, as well as a power
2.1 separation between certificate complexity and sensitivity. While to solve the
sensitivity conjecture seems very challenging for generalBoolean functions, spe-
cial classes of functions have also been investigated, suchas functions with graph
properties [24], cyclically invariant functions [10], small alternating number [18],
constant depth regular read-k formulas [6], etc [21]. We recommend readers [16]
for an excellent survey about the sensitivity conjecture. For other recent progresses,
see [1,2,5,8,13–15,22].

Our Results. In this paper, we give a better upper bound of block sensitivity in
terms of sensitivity.

Theorem 1. For any total Boolean function f: {0, 1}n→ {0, 1},

bs( f ) ≤ C( f ) ≤ (
8
9
+ o(1))s( f )2s( f )−1.

Here o(1) denotes a term that vanishes as s( f )→∞.

Ambainis et al. [3] also investigated the function withs1( f ) = 2, and showed
thatC0( f ) ≤ 9

5 s0( f ) for any Boolean function withs1( f ) = 2. In this paper, we
also improve this bound,

Theorem 2. Let f be a Boolean function with s1( f ) = 2,

C0( f ) ≤ 37+
√

5
22

s0( f ) ≈ 1.783s0( f ).

Organization. We present preliminaries in Section 2. We give the overall structure
of our proof for Theorem 1 in Section 3 and the detailed proofsfor lemmas in
Section 4. We prove Theorem 2 in Section 5. Finally, we conclude this paper in
Section 6.
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2 Preliminaries

Let f : {0, 1}n→ {0, 1} be a Boolean function. For an inputx ∈ {0, 1}n and a subset
B ⊆ [n], xB denotes the input obtained by flipping all the bitx j such thatj ∈ B.

Definition 1. Thesensitivityof f on input x is defined as s( f , x) := |{i : f (x) ,
f (xi)}|. The sensitivity s( f ) of f is defined as s( f ) := maxx s( f , x). The b-sensitivity
sb( f ) of f , where b∈ {0, 1}, is defined as sb( f ) = maxx∈ f −1(b) s( f , x).

Definition 2. Theblock sensitivitybs( f , x) of f on input x is the maximum number
of disjoint subsets B1, B2, · · · , Br of [n] such that for all j∈ [r], f (x) , f (xB j ). The
block sensitivity of f is defined as bs( f ) = maxx bs( f , x). The b-block sensitivity
bsb( f ) of f , where b∈ {0, 1}, is defined as bsb( f ) = maxx∈ f −1(b) bs( f , x).

Definition 3. A partial assignment is a function p: {0, 1}n → {0, 1, ∗}. We call
S = {i|p(i) , ∗} the support of this partial assignment. We define the co-dimension
of p denoted by co-dim(p) to be|S|. We say x is consistent with p if xi = pi for
every i∈ S . p is called a b-certificate if f(x) = b for any x consistent with p, where
b ∈ {0, 1}. For B ⊆ S , pB denotes the partial assignment obtained by flipping all
the bit pj such that j∈ B. For i ∈ [n]/S , pi=0 denotes the partial assignment
obtained by setting pi = 0.1

Definition 4. The certificate complexityC( f , x) of f on x is the minimum co-
dimension of f(x)-certificate that x is consistent with. The certificate complexity
C( f ) of f is defined as C( f ) = maxx C( f , x). The b-certificate complexity Cb( f ) of
f is defined as Cb( f ) = maxx∈ f −1(b) C( f , x)

In this work we regard{0, 1}n as a set of vertices for an-dimensional hypercube
Qn, where two nodesx andy has an edge if and only if the Hamming distance
between them is 1. A Boolean functionf : {0, 1}n → {0, 1} can be regarded as
a 2-coloring of the vertices ofQn, wherex is black if f (x) = 1 andx is white if
f (x) = 0. Let f −1(1) = {x| f (x) = 1} be the set of all black vertices. Iff (x) , f (y),
we call the edge (x, y) a sensitive edge andx is sensitive toy (y is also sensitive
to x). We regard a subsetS ∈ {0, 1}n as the subgraphG induced by the vertices in
S. Define the size ofG, |G|, as the size ofS. It is easy to see thats( f , x) is the
number of neighbors ofxwhich has the different color withx. It is easy to see that a
certificate is a monochromatic subcube, andC( f , x) is the minimum co-dimension
of monochromatic subcube which containsx.

There is a natural bijection between the partial assignments and the subcubes,
where a partial assignmentp corresponds to a subcube induced the vertices consis-
tent with p. Without ambiguity, we sometimes abuse these two concepts.

Definition 5. Let G and H be two induced subgraphs of Qn. Let G∩ H denote
the graph induced on V(G) ∩ V(H). For any two subcubes G and H, we call H a
neighbor cube of G if their corresponding partial assignments pG and pH satisfying
pG = pi

H for some i.

1The functionp can be viewed as a vector, and we sometimes usepi to representp(i).
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Our proofs rely on the following result proved by Ambainis and Vihrovs [5].

Lemma 1. [5] Let G be a non-empty induced subgraph of Qk satisfying that the
sensitivity of every vertices in G is at most s, then either|G| ≥ 3

2 · 2
k−s, or G is a

subcube of Qk with co-dim(G)=s and|G| = 2k−s.

Definition 6. For any set S⊆ {0, 1}n, let s( f ,S) to be
∑

x∈S s( f , x), the average
sensitivity of S is defined by s( f ,S)/|S|.

3 The Sketch of Proof

In this section, we give the sketch of the proof of Theorem 1. We first present some
notations used in the proof. Letf be ann-input Boolean function. Letz be the
input with f (z) = 0 andC( f , z) = C0( f ) = m, W.l.o.g, we assumez= 0n, then there
exists a 0-certificate of co-dimC0( f ) consistent withz, and letH be the one with
maximum average sensitivity if there are many such 0-certificates. W.l.o.g, assume
H = 0m∗n−m. Among them neighbor cubes ofH, from Lemma 1 we have either
|Hi ∩ f −1(1)| ≥ 3

2 ·
|H|

2s1( f )−1 or Hi ∩ f −1(1) is a co-dimensional (s1( f )− 1) subcube of

Hi of size |H|
2s1( f )−1 , which are calledheavy cubeandlight cube, respectively. W.l.o.g,

assumeH1,H2 · · · ,Hl are light cubes andHl+1, · · · ,Hm are heavy cubes, where
l ≤ m is the number of light cubes. Fork > m, let N0

k = {i ∈ [l]|(Hi ∩ f −1(1))k = 0}.
Similarly, let N1

k = {i ∈ [l]|(Hi ∩ f −1(1))k = 1} andNk = N0
k ∪ N1

k .
For any subcubeH′ ⊆ H, we usesl( f ,H′) (sh( f ,H′) respectively) to denote

the number of sensitive edges ofH′ adjacent to the light cubes (heavy cubes
respectively). Similarly, for subcubeH′ ⊆ Hi where i ≤ l, we usesl( f ,H′)
(sh( f ,H′) respectively) to denote the number of sensitive edges ofH′ adjacent
to H1,i , · · · ,Hi−1,i ,Hi ,Hi+1,i , · · · ,Hl,i (Hl+1,i , · · · ,Hm,i respectively). It is easy to
seesl( f ,H′) + sh( f ,H′) = s( f ,H′).

The main idea is show that there are many 1-inputs in the heavycubes. To
see why it works, consider the extremal case where there are no light cubes (i.e.
l = 0), then the average sensitivity ofH is no less thanm · 3

2s1( f ) . Because the

average sensitivity ofH can not exceeds0( f ), we havem · 3
2s1( f ) ≤ s0( f ) andm ≤

2
3 s0( f )2s1( f )−1.

More specifically, the average sensitivity ofH is no less than l
2s1( f )−1 +

3(m−l)
2s1( f ) .

Let L = s0( f )2s1( f )−1/l. If L ≥ 2, we havel ≤ s0( f )2s1( f )−2 andm≤ 5
6 s0( f )2s1( f )−1.

In the following paper, we assumeL < 2. If s1( f ) = 1, it has already been shown
thatC0( f ) ≤ s0( f ) [3]. So we assumes1( f ) ≥ 2 here. Hence, fromL < 2 we have
l > s0( f ). Note that ifi ∈ N1

k , thenHk=0 together withHi
k=0 is another certificate

of z of the same co-dimension withH, thus according to the assumption thatH is
the one with maximum average sensitivity, we have

s( f ,H) −
(

s( f ,Hk=0) + s( f ,Hi
k=0)
)

= s( f ,Hk=1) − s( f ,Hi
k=0) ≥ 0.
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By summing over different cubes and different bits, we get
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

(

sh( f ,Hk=1) − sh( f ,Hi
k=0)
)

=
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

[

(sl( f ,Hi
k=0) − sl( f ,Hk=1)) − (s( f ,Hi

k=0) − s( f ,Hk=1))
]

≥
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

(

sl( f ,Hi
k=0) − sl( f ,Hk=1)

)

≥ (s1( f ) − 1)|H|
2s1( f )−1

∑

k:|N1
k |≥s1( f )−1

|N0
k |

≥ (
1
2
− o(1))

(s1( f ) − 1)2|H|l
2s1( f )−1

.

(1)
Hereo(1) denotes a term that vanishes ass1( f ) → ∞, andS1

k is a subset ofN1
k of

sizes1( f ) − 1. The second last inequality is due to the following lemma.

Lemma 2. sl( f ,Hi
k=0) − sl( f ,Hk=1) ≥ |N

0
k |·|H|

2s1( f )−1 , for any i∈ N1
k .

The last inequality is due to

Lemma 3. If L < 2, then
∑

k:|N1
k |≥s1( f )−1(1

2 − o(1))|N0
k | ≥ l(s1( f ) − 1).

On the other side, we can show that

Lemma 4.
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

(

sh( f ,Hk=1) − sh( f ,Hi
k=0)
)

≤ (s1( f ) − 1)2
∑

l<t≤m

|Ht ∩ f −1(1)|.

The proofs of these three lemmas are postponed to the next section. We first
finish the proof of Theorem 1 here. Equality 1 together with Lemma 4 states that
there are many 1-inputs in the heavy cubes, i.e.

∑

l<t≤m

|Ht ∩ f −1(1)| ≥
((1

2 − o(1))l|H|
2s1( f )−1

.

Combined it with

l

2s1( f )−1
+
∑

l<t≤m

|Ht ∩ f −1(1)|
|H| ≤ s0( f ),

we get

l ≤ (
2
3
+ o(1))2s1( f )−1s0( f ).

Moreover, recall that|Ht ∩ f −1(1)|/|H| ≥ 3
2s1( f ) , thus

l

2s1( f )−1
+

3
2
· m− l

2s1( f )−1
≤ s0( f ).

Therefore,
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C0( f ) = m≤ (8
9 + o(1))s0( f )2s1( f )−1.

Here, o(1) denotes a term that vanishes ass1( f ) → ∞. Similarly, we can also
obtain

C1( f ) ≤ (8
9 + o(1))s1( f )2s0( f )−1.

Therefore,

C( f ) ≤ (8
9 + o(1))s( f )2s( f )−1.

whereo(1) denotes a term that vanishes ass( f )→ ∞.

4 Proofs of the Lemmas

4.1 Proof of Lemma 2

Before giving the proof of Lemma 2, we first state the following lemma which will
be used.

Lemma 5. If i , j ∈ Nk, then|Hi, j
k=1 ∩ f −1(1)| ≥ |H|

2s1( f )−1 and |Hi, j
k=0 ∩ f −1(1)| ≥ |H|

2s1( f )−1 .

Proof. W.l.o.g, assumei ∈ N1
k . For anyx ∈ Hi∩ f −1(1) ⊆ Hi

k=1, there are (s1( f )−1)
vertices inHi as well asxi ∈ H sensitive tox, thus x j ∈ Hi, j is in f −1(1), since
otherwisex would be sensitive tos1( f ) + 1 vertices. Therefore,|Hi, j

k=1 ∩ f −1(1)| ≥
|Hi ∩ f −1(1)| = |H|

2s1( f )−1 . Similarly, if j ∈ N0
k , we have|Hi, j

k=0 ∩ f −1(1)| ≥ |H|
2s1( f )−1 .

If j ∈ N1
k , note thatHi, j

k=0 ∩ f −1(1) , ∅, since otherwiseHi, j
k=0,H

i
k=0,H

j
k=0 and

Hk=0 would become a larger monochromatic subcube containgz, which is con-
tradicted with the assumption ofH. For anyy ∈ Hi, j

k=0 ∩ f −1(1), y is sensitive to

yi ∈ Hi andy j ∈ H j , thusy has at mosts1( f )−2 sensitive edges inHi, j
k=0. Therefore,

|Hi, j
k=0 ∩ f −1(1)| ≥ |Hi, j

k=0|
2s1( f )−2 =

|H|
2s1( f )−1 according to Lemma 1. �

Proof. (Proof of Lemma 2) SinceHk=1 ∩ f −1(1) = ∅ andHi
k=0 ∩ f −1(1) = ∅, it is

easy to see

sl( f ,Hk=1) =
l
∑

j=1

|H j
k=1 ∩ f −1(1)| =

|N1
k | · |H|

2s1( f )−1
+

(l − |Nk|)|H|
2s1( f )

=
(l + |N1

k | − |N
0
k |)|H|

2s1( f )
.

Similarly,

sl( f ,Hi
k=0) =

∑l
j=1, j,i |H

i, j
k=0 ∩ f −1(1)| + |Hi ∩ f −1(1)|.

If j < Nk, then for anyx ∈ H j ∩ f −1(1), we havexi ∈ f −1(1) since otherwisex
would haves1( f ) + 1 sensitivity edges, thus|Hi, j

k=0 ∩ f −1(1)| ≥ 1
2 |H

i, j
k=0 ∩ f −1(1)| =

|H|
2s1( f ) . If j ∈ Nk, |Hi, j

k=0 ∩ f −1(1)| ≥ |H|
2s1( f )−1 according to Lemma 5. Therefore,

sl( f ,Hi
k=0) ≥ (l+|N1

k |+|N
0
k |)|H|

2s1( f ) = sl( f ,Hk=1) +
|N0

k |·|H|
2s1( f )−1 . �
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4.2 Proof of Lemma 3

We first prove two lemmas. With these lemmas, Lemma 3 becomes obvious.

Lemma 6. 2 For any integer c> 2,
∑

|Nk|≥c

|Nk| ≥ l
(

logl − log
(

s0( f )(s1( f ) − 1)(c− 2)+ s0( f )
)

)

.

Proof. First note that fori ≤ l, Hi ∩ f −1(1) is a subcube and co-dim(Hi ∩ f −1(1)) =
n−m− s1( f )+1, which means|{k > m|(Hi ∩G)k , ∗}| = s1( f )−1. W.l.o.g, assume
|Nk| ≥ c only whenk ∈ [m+ 1,m+ w]. For anyy ∈ {0, 1}w, let y = {i ∈ [l]|∀ j ∈
[w] : (Hi ∩G) j+m , y j}.

We claim that for anyy, |y| can not be "too large". Think about the graph
G = (V,E) whereV = yand (i, j) ∈ E if i, j ∈ Nk and (Hi∩ f −1(1))k , (H j∩ f −1(1))k
for somek > m+ w. It is easy to see that for anyi ∈ y,

deg(i) ≤ ∑n
k=m+w+1[(Hi ∩ f −1(1))k , ∗](|Nk| − 1) ≤ (s1( f ) − 1)(c− 2),

thus according to Turan’s theorem, there exist a independent setS of size |S| =
|y|

(s1( f )−1)(c−2)+1 , which means there exists an inputx ∈ H such thatxi ∈ f −1(1) for
any i ∈ S, therefore|S| ≤ s0( f ), implying

|y| ≤ ((s1( f ) − 1)(c− 2)+ 1)s0( f ). (2)

On the other side, letwi = |{k ∈ [m+ 1,m+w]|(Hi ∩G)k , ∗}|, then there are exact
2w−wi ys containingi, thus

∑

y∈{0,1}n
|y| =

∑

i≤l

2w−wi ≥ l · 2w−
∑

i≤l wi/l = l · 2w−
∑m+w

k=m+1 |Nk|/l . (3)

The inequality is due to the AM-GM inequality. From Inequality (2) and (3), we
can get this lemma. �

Lemma 7. If l > s0( f ), then
∑

k>m

∣

∣

∣|N0
k | − |N

1
k |
∣

∣

∣ ≤ l
√

2 ln L(s1( f ) − 1).

Proof. For convenience, assume|N0
k | ≤ |N

1
k | for anyk > m, and the other cases can

follow the same proof. First note that
∑

k>m |N0
k | ≥ 1, otherwise there existx ∈ H

such thatxi ∈ f −1(1) for everyi ∈ [l], which is a contradiction withl > s0( f ).
We sample a inputx ∈ H as Pr(xk = 0) = p independently for eachk > m. Here
p :=

∑

k>m |N0
k |/
∑

k>m |Nk| > 0. Recall that fori ∈ [l], |{k > m : (Hi ∩ f −1(1))k ,
∗}| = s1( f ) − 1, then Pr(xi ∈ f −1(1)) = pdi (1 − p)s1( f )−1−di , wheredi := |{k > m :
(Hi ∩ f −1(1))k = 0}|. Therefore

s0( f ) ≥ E(s( f , x)) ≥
∑

i∈[l]
Pr(xi ∈ f −1(1)) ≥ lpp(s1( f )−1)(1− p)(1−p)(s1( f )−1). (4)

2The logarithm uses base 2.
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The last step is due to the AM-GM inequality and the fact that
∑

k>m |Nk| = l(s1( f )−
1). By calculus, it is not hard to obtaine2(p−1/2)2 ≤ 2pp(1 − p)1−p for p ≤ 1

2.
Together with Inequality (4) and recall thatL = s0( f )2s1( f )−1/l, it implies p ≥
1
2(1−

√

2 ln L
s1( f )−1). Therefore

∑

k>m(|N1
k | − |N

0
k |) = (1− 2p)

∑

k>m |Nk| ≤ l
√

2 lnL(s1( f ) − 1).

�

Now, Lemma 3 becomes obvious. For anyc2 > 2c1, first note that

∑

|N1
k |<c1,|Nk|≥c2

|N0
k | − |N

1
k | =

∑

|N1
k |<c1,|Nk|≥c2

|Nk|(1−
2|N1

k |
|Nk|

) ≥ c2 − 2c1

c2

∑

|N1
k |<c1,|Nk|≥c2

|Nk|.

Then we have
∑

|N1
k |≥c1

2|N0
k | ≥

∑

|N1
k |≥c1,|Nk|≥c2

2|N0
k |

=
∑

|Nk|≥c2

|Nk| −
∑

|N1
k |<c1,|Nk|≥c2

|Nk| −
∑

|N1
k |≥c1,|Nk|≥c2

(|N1
k | − |N

0
k |)

≥
∑

|Nk|≥c2

|Nk| −
c2

c2 − 2c1

∑

|N1
k |<c1,|Nk|≥c2

(|N0
k | − |N

1
k |) −

∑

|N1
k |≥c1,|Nk|≥c2

∣

∣

∣|N1
k | − |N

0
k |
∣

∣

∣

≥
∑

|Nk|≥c2

|Nk| −
c2

c2 − 2c1

∑

|Nk|≥c2

∣

∣

∣|N0
k | − |N

1
k |
∣

∣

∣ .

According to Lemma 6 and Lemma 7, we have

∑

|N1
k |≥c1

|N0
k | ≥

l(logl − log(s0( f )(s1( f ) − 1)(c2 − 1)+ s0( f )))
2

−
lc2
√

2 lnL(s1( f ) − 1)

2(c2 − 2c1)

=
l(s1( f ) − 1− log L − log((s1( f ) − 1)(c2 − 2)+ 1))

2
−

lc2
√

2 lnL(s1( f ) − 1)

2(c2 − 2c1)

RecallL ≤ 2, and letc1 = s1( f ) − 1 andc2 = 3c1, thus

∑

|N1
k |≥s1( f )−1

|N0
k | ≥ l(s1( f ) − 1)(

1
2
− o(1)).

4.3 Proof of Lemma 4

Proof. Note thatHk=1 ∩ f −1(1) = ∅ andHi
k=0 ∩ f −1(1) = ∅ for i ∈ N1

k . Thus it is
easy to see that

sh( f ,Hk=1) − sh( f ,Hi
k=0) =

∑

l<t≤m

∑

x∈Ht
k=1

( f (x) − f (xi,k)).

8



Therefore,
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

(

sh( f ,Hk=1) − sh( f ,Hi
k=0)
)

=
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

∑

l<t≤m

∑

x∈Ht
k=1

(

f (x) − f (xi,k)
)

≤
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

∑

l<t≤m

∑

x∈Ht ,

f (x)=1, f (xi,k)=0

1

=
∑

k:|N1
k |≥s1( f )−1

∑

i∈S1
k

∑

l<t≤m

(

∑

x∈Ht , f (x)=1,
f (xk)=0, f (xi,k)=0

1+
∑

x∈Ht , f (x)=1,
f (xk)=1, f (xi,k)=0

1
)

≤
∑

l<t≤m

(

∑

x∈Ht , f (x)=1

∑

k:|N1
k |≥s1( f )−1,

f (xk)=0

∑

i∈S1
k

1+
∑

x∈Ht , f (xk)=1

∑

i: f (xi,k)=0

∑

k:i∈S1
k

1
)

≤
∑

l<t≤m

(

∑

x∈Ht , f (x)=1

∑

k:|N1
k |≥s1( f )−1,

f (xk)=0

(s1( f ) − 1)+
∑

x∈Ht , f (xk)=1

∑

i: f (xi,k)=0

(s1( f ) − 1)
)

=
∑

l<t≤m

(

∑

x∈Ht , f (x)=1

∑

k:|N1
k |≥s1( f )−1,

f (xk)=0

(s1( f ) − 1)+
∑

x∈Ht , f (x)=1

∑

i: f (xi )=0

(s1( f ) − 1)
)

=
∑

l<t≤m

∑

x∈Ht , f (x)=1

(

∑

k>m, f (xk)=0

1+
∑

i≤l, f (xi )=0

1
)

(s1( f ) − 1)

≤
∑

l<t≤m

∑

x∈Ht , f (x)=1

(s1( f ) − 1)2 = (s1( f ) − 1)2
∑

l<t≤m

|Ht ∩ f −1(1)|.

�

5 Proof of Theorem 2

Proof. The notation used here is similar to that in section 4. Letf be ann-input
Boolean function withs1( f ) = 2. Let z be the input withf (z) = 0 andC( f , z) =
C0( f ) = m, then there exists a 0-certificate of co-dimC0( f ) consistent withz. LetH
be the one with maximum average sensitivity if there are manysuch 0-certificates.
Among them neighbor cubes ofH, from Lemma 1 we have either|Hi ∩ f −1(1)| ≥
3|H|

4 or that Hi ∩ f −1(1) is a 1 co-dimensional subcube ofHi of size |H|2 , which
are calledheavy cubeand light cuberespectively. For light cubesHi and H j, if
(Hi ∩ f −1(1))k = b and (H j ∩ f −1(1))k = 1− b, whereb ∈ {0, 1}, We call{Hi ,H j}
a pair. W.l.o.g, assumeH = 0m∗n−m and there arel light cubes andl1/2 mutually
disjoint pairs. Moreover, assume that thel1 cubes in pairs areH1,H2, . . . ,Hl1, the
l2 := l − l1 other light cubes areHl1+1,Hl1+2, . . . ,Hl and theh heavy cubes are
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Hl+1,Hl+2, . . . ,Hm. In addition, assume{i ∈ [l1, l]|(Hi ∩ f −1(1))k = 1} = 1 for
k > mby flipping the bits.

The main idea is to prove two inequalities:s0( f ) ≥ 5l1
8 +

l2+h
2 and s0( f ) ≥

l1
2 + (1 − p)l2 + 2ph− p2h for any 0≤ p ≤ 1

2, with which we would obtain the
conclusion through a little calculation.

The first inequality is due to the following lemma [3].

Lemma 8. [3] Let P be a set of mutually disjoint pairs of the neighbour cubes of
H. Then there exist a0-certificate H′ such that z∈ H′, dim(H) = dim(H′) and H′

has at least|P| heavy neighbour cubes.

Thus

s( f ) ≥ s( f ,H′)
|H′| ≥

1
2

(l1 + l2 + h− l1
2

) +
3
4
× 1

2
l1 =

5l1
8
+

l2 + h
2
. (5)

We show the second inequality by the probabilistic method. We sample a input
x ∈ H as Pr(xk = 0) = p independently for eachk > m. Recall that fori ∈ [l],
|{k > m : (Hi ∩ f −1(1))k , ∗}| = 1, then Pr(xi ∈ f −1(1)) = pdi (1 − p)1−di , where
di := |{k > m : (Hi ∩ f −1(1))k = 0}|. Therefore

∑

i∈[l]
Pr(xi ∈ f −1(1)) =

∑

i≤l1

pdi (1− p)1−di +
∑

l1<i≤l1+l2

pdi (1− p)1−di

=
l1
2

(p+ 1− p) + l2(1− p) =
l1
2
+ (1− p)l2.

(6)

For any heavy cubeHi, wherel < i ≤ m, we claim that Pr(f (xi ) = 1) ≥ 2p − p2,
which implies the inequality since

s0( f ) ≥ E(s( f , x)) =
m
∑

i=1

Pr(f (xi) = 1) ≥ l1
2
+ (1− p)l2 + 2ph− p2h.

Let C ⊆ Hi ∩ f −1(0) be a maximal 0-certificate andN(C) be the set of vertices
adjacent toC. Here we say a certificate is maximal if it is not contained in alarger
one. Then according to the assumption thats1( f ) = 2, it is easy to seef (x) = 1
for any x ∈ N(C). ThusHi ∩ f −1(0) can be decomposed into disjoint maximal 0-
certificates, denoted by{C1,C2, · · · }. Moreover, we also haveN(C j1)∩N(C j2) = ∅
if j1 , j2, sinces(y) ≥ 3 for y ∈ N(C j1) ∩ N(C j2). For eachC, let D = |{k > m :
C(k) , ∗}| andD0 = |{k > m : C(k) = 0}|. Note that

Pr(xi ∈ C) = pD0(1− p)D−D0.

If D ≤ 2, from Lemma 1 we haveHi ∩ f −1(0) = C. Therefore,

Pr(xi ∈ f −1(1)) = 1− Pr(xi ∈ C) = 1− pD0(1− p)D−D0 ≥ 1− (1− p)2. (7)
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If D ≥ 3, it is not hard to see

Pr(xi ∈ N(C)) = D0pD0−1(1− p)D−D0+1 + (D − D0)pD0+1(1− p)D−D0−1

≥ D0pD0+1(1− p)D−D0−1 + (D − D0)pD0+1(1− p)D−D0−1

=

( Dp
1− p

)

Pr(xi ∈ C) ≥
( 3p
1− p

)

Pr(xi ∈ C)

≥
( 1

(1− p)2
− 1
)

Pr(xi ∈ C).

(8)

Thus

Pr(f (xi) = 1) ≥
∑

t

Pr(xi ∈ N(Ct)) ≥
( 1

(1− p)2
− 1
)

∑

t

Pr(xi ∈ Ct)

=

( 1

(1− p)2
− 1
)

Pr(f (xi) = 0).

Therefore, Pr(xi ∈ f −1(1)) ≥ 1− (1− p)2 = 2p− p2.
Now we have shown the two inequalities, that is,

s0( f ) ≥ max















max
0≤p≤ 1

2

{l1/2+ l2(1− p) + 2ph− p2h}, 5
8

l1 +
l2 + h

2















. (9)

If h ≤ l2 ≤ 2h, let p = 1− l2
2h, we have

s0( f ) ≥ max
{ l1
2
+

l22
4h
+ h,

5l1
8
+

l2 + h
2
}

.

Let l′2 =
l2

l1+l2+h, h′ = h
l1+l2+h, we get

s0( f ) ≥ (l1 + l2 + h) max















1
2
−

l′2
2
+

h′

2
+

l′2
2

4h′
,
5
8
−

l′2 + h′

8















.

Let g1(l′2, h
′) = 1

2 −
l′2
2 +

h′

2 +
l′2

2

4h′ , g2(l′2, h
′) = 5

8 −
l′2+h′

8 andx(h′) = 3h′+
√

8h′−31h′2
4 .

We haveg1(x(h′), h′) = g2(x(h′), h′) and max{g1(l′2, h
′), g2(l′2, h

′)} ≥ g1(x(h′), h′),
becauseg1(l′2, h

′) is monotone increasing andg2(l′2, h
′) is monotone decreasing if

l′2 increases. By calculating the zero point of the derivative of functiong1(x(h′), h′),

we haveg1(x(h′), h′) takes the minimum value ath′∗ =
20+7

√
5

155 . Therefore,

s0( f ) ≥ (l1 + l2 + h) max{g1(l′2, h
′), g2(l′2, h

′)}
≥ (l1 + l2 + h)g1(x(h′), h′)

≥ (l1 + l2 + h)g1(x(h′∗), h
′
∗)

=
(37−

√
5)(l1 + l2 + h)

62
.

(10)
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If l2 ≤ h, let p = 1
2. From Inequality (9) we have

s0( f ) ≥ max
{ l1 + l2

2
+

3h
4
,
5l1
8
+

l2 + h
2
}

≥ max
{ l1
2
+

5(l2 + h)
8

,
5l1
8
+

l2 + h
2
}

≥ 1
2

( l1
2
+

5(l2 + h)
8

+
5l1
8
+

l2 + h
2

)

=
9(l1 + l2 + h)

16
.

(11)

The second inequality is due tol2 ≤ h.
If l2 ≥ 2h, let p = 0. From Inequality (9) we have

s0( f ) ≥ max
{ l1
2
+ l2,

5l1
8
+

l2 + h
2
}

≥ max
{ l1
2
+

2(l2 + h)
3

,
5l1
8
+

l2 + h
2
}

≥ 3
7

( l1
2
+

2(l2 + h)
3

)

+
4
7

(5l1
8
+

l2 + h
2

)

=
4(l1 + l2 + h)

7
.

(12)

The second inequality is due tol2 ≥ 2h.
Combining inequality (10), (11) and (12), we have

s0( f ) ≥ (37−
√

5)(l1 + l2 + h)
62

.

Therefore,

c0( f ) = l1 + l2 + h ≤ 37+
√

5
22

s0( f ).

�

6 Conclusion

In this work, we give a better upper bound of block sensitivity in terms of sensi-
tivity. Our results are based on carefully exploiting the structure of the light cubes.
However, our approach has an obvious limitation. In the extremal case, if there
are no light cubes, then we can only getbs( f ) ≤ C( f ) ≤ 2

3 s( f )2s( f )−1. Better un-
derstanding about the structure of heavy cubes is needed in order to conquer this
limitation.
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